Final Exam - Functional Analysis (WIFA-08)

Tuesday 4 April 2017, 9.00h-12.00h
University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.
2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or " 42 " is not sufficient.
3. If p is the number of marks then the exam grade is $G=1+p / 10$.

Problem $1(10+5+5+5=25$ points $)$

Consider the following normed linear space:

$$
\begin{aligned}
X & =\{f:[a, b] \rightarrow \mathbb{K}: f \text { is bounded }\}, \\
\|f\| & =\sup _{x \in[a, b]}|f(x)| .
\end{aligned}
$$

(a) Prove that X is a Banach space (i.e., every Cauchy sequence has a limit).
(b) Prove that $V=\{f \in X: f(a)=f(b)=0\}$ is a linear subspace of X.
(c) Prove that V is closed in X.
(d) Compute $\operatorname{dim}(X / V)$.

Problem $2(6+3+8+8=25$ points $)$
Let $\alpha \in \mathbb{C}$ satisfy $|\alpha|<1$ and consider the following linear operator:

$$
T: \ell^{2} \rightarrow \ell^{2}, \quad\left(x_{1}, x_{2}, x_{3}, \ldots\right) \mapsto\left(\alpha x_{1}, \alpha^{2} x_{2}, \alpha^{3} x_{3}, \ldots\right)
$$

Prove the following statements:
(a) $\|T\|=|\alpha|$;
(b) T is selfadjoint if and only if $\alpha \in \mathbb{R}$;
(c) T is compact;
(d) $\sigma(T)=\left\{\alpha^{n}: n \in \mathbb{N}\right\} \cup\{0\}$.

Problem $3(5+3+7+5=20$ points $)$
(a) Formulate Baire's theorem for metric spaces.
(b) Let $\|\cdot\|$ be any norm on the space

$$
\mathcal{P}=\{p: \mathbb{K} \rightarrow \mathbb{K}: p \text { is a polynomial }\}
$$

Prove the following statements:
(i) $\mathcal{P}_{n}=\{p \in \mathcal{P}: \operatorname{deg} p \leq n\}$ is closed for each $n \in \mathbb{N} \cup\{0\}$;
(ii) \mathcal{P}_{n} is nowhere dense for each $n \in \mathbb{N} \cup\{0\}$;
(iii) \mathcal{P} is not a Banach space.

Problem $4(5+5+3+7=20$ points $)$
(a) Formulate the Hahn-Banach theorem for normed linear spaces.
(b) Let X be an infinite-dimensional normed linear space over \mathbb{C}. Pick $x_{0} \in X$, $x_{0} \neq 0$, and let $V=\operatorname{span}\left\{x_{0}\right\}$. Define the linear functional $f: V \rightarrow \mathbb{C}$ by setting $f\left(\lambda x_{0}\right)=(1+4 i) \lambda\left\|x_{0}\right\|$.

Does there exist a functional $g \in X^{\prime}$ such that $g \upharpoonright V=f$ and:
(i) $\|g\|=4$?
(ii) $\|g\|=\sqrt{17}$?
(iii) $\|g\| \geq 23$?

Solution of Problem $1(10+5+5+5=25$ points)
(a) If $\left(f_{n}\right)$ is a Cauchy sequence in X, then for each $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that

$$
n, m \geq N \quad \Rightarrow \quad\left\|f_{n}-f_{m}\right\| \leq \varepsilon
$$

In particular, for each $x_{0} \in[a, b]$ it follows that

$$
\begin{equation*}
n, m \geq N \quad \Rightarrow \quad\left|f_{n}\left(x_{0}\right)-f_{m}\left(x_{0}\right)\right| \leq \varepsilon, \tag{1}
\end{equation*}
$$

which means that $\left(f_{n}\left(x_{0}\right)\right)$ is a Cauchy sequence in \mathbb{K}.

(3 points)

Since \mathbb{K} is complete the sequence $\left(f_{n}\left(x_{0}\right)\right)$ converges. Hence, we can define $f:[a, b] \rightarrow \mathbb{K}$ by

$$
f\left(x_{0}\right)=\lim _{n \rightarrow \infty} f_{n}\left(x_{0}\right), \quad x_{0} \in[a, b] .
$$

(2 points)

Taking $m \rightarrow \infty$ in the inequality (1) gives

$$
n \geq N \quad \Rightarrow \quad\left|f_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right| \leq \varepsilon
$$

and since $x_{0} \in[a, b]$ is arbitrary it follows that

$$
n \geq N \quad \Rightarrow \quad\left\|f_{n}-f\right\|=\sup _{x_{0} \in[a, b]}\left|f_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right| \leq \varepsilon
$$

which means that $f_{n} \rightarrow f$ in X.
(3 points)
Finally, with $n=N$ it follows that $f_{N}-f \in X$ so that $f=f_{N}-\left(f_{N}-f\right) \in X$. (2 points)
(b) If $f, g \in V$ and $\lambda, \mu \in \mathbb{K}$ then

$$
\begin{aligned}
& (\lambda f+\mu g)(a)=\lambda f(a)+\mu g(a)=0, \\
& (\lambda f+\mu g)(b)=\lambda f(b)+\mu g(b)=0,
\end{aligned}
$$

which implies that $\lambda f+\mu g \in V$. This proves that V is a linear subspace of X. (5 points)
(c) If $f \in \bar{V}$, then there exists a sequence $f_{n} \in V$ such that $f_{n} \rightarrow f$. Hence

$$
|f(a)|=\left|f(a)-f_{n}(a)\right| \leq\left\|f-f_{n}\right\| \rightarrow 0
$$

which implies that $f(a)=0$. Similarly, it follows that $f(b)=0$. We conclude that $f \in V$ so that V is closed.

(5 points)

(d) Define the linear map $T: X \rightarrow \mathbb{K}^{2}$ by $T f=(f(a), f(b))$. Then ker $T=V$ and obviously $\operatorname{ran} T=\mathbb{K}^{2}$. Note that $X / \operatorname{ker} T \simeq \operatorname{ran} T$ which implies that $\operatorname{dim}(X / V)=2$.
(5 points)

Solution of Problem $2(6+3+8+8=25$ points $)$
(a) Since $|\alpha|<1$ it follows that $|\alpha|^{n} \leq|\alpha|$ for each $n \in \mathbb{N}$. Let $x \in \ell^{2}$ be arbitrary, then

$$
\|T x\|^{2}=\sum_{n=1}^{\infty}\left|\alpha^{n} x_{n}\right|^{2}=\sum_{n=1}^{\infty}|\alpha|^{2 n}\left|x_{n}\right|^{2} \leq|\alpha|^{2} \sum_{n=1}^{\infty}\left|x_{n}\right|^{2}=|\alpha|^{2}\|x\|^{2},
$$

which shows that

$$
\|T\|=\sup _{x \neq 0} \frac{\|T x\|}{\|x\|} \leq|\alpha| .
$$

(4 points)

Note that for $x=(1,0,0, \ldots)$ we have $\|x\|=1$ and $\|T x\|=|\alpha|$ which implies that $\|T\|=|\alpha|$.
(2 points)
(b) If $x, y \in \ell^{2}$ then

$$
(T x, y)=\sum_{n=1}^{\infty} \alpha^{n} x_{n} \bar{y}_{n}=\sum_{n=1}^{\infty} x_{n} \overline{\bar{\alpha}^{n} y_{n}}=\left(x, T^{*} y\right)
$$

which shows that $T^{*} y=\left(\bar{\alpha} y_{1}, \bar{\alpha}^{2} y_{2}, \bar{\alpha}^{3} y_{3}, \ldots\right)$. In particular, it follows that $T=T^{*}$ if and only if $\alpha \in \mathbb{R}$.

(3 points)

(c) Define for $k \in \mathbb{N}$ the operator

$$
T_{k}: \ell^{2} \rightarrow \ell^{2}, \quad\left(x_{1}, x_{2}, x_{3}, \ldots\right) \mapsto\left(\alpha x_{1}, \ldots, \alpha^{k} x_{k}, 0,0,0, \ldots\right)
$$

The same argument as in part (a) shows that T_{k} is bounded. In addition, $\operatorname{ran} T_{k}$ is finite-dimensional, which implies that T_{k} is compact.

(4 points)

Let $x \in \ell^{2}$ be arbitrary, then

$$
\left\|\left(T-T_{k}\right) x\right\|^{2}=\sum_{n=k+1}^{\infty}|\alpha|^{2 n}\left|x_{n}\right|^{2} \leq|\alpha|^{2 k+2} \sum_{n=k+1}^{\infty}\left|x_{n}\right|^{2} \leq|\alpha|^{2 k+2}\|x\|^{2} .
$$

which shows that $\left\|T-T_{k}\right\| \leq|\alpha|^{2 k+2} \rightarrow 0$ as $k \rightarrow \infty$. Since each T_{k} is compact it follows that T is compact as well.

(4 points)

(d) Clearly, α^{n} is an eigenvalue of T for each $n \in \mathbb{N}$. The corresponding eigenvector is given by the n-th standard unit vector. Hence, $\left\{\alpha^{n}: n \in \mathbb{N}\right\} \subset \sigma(T)$.
(2 points)
Note that $\alpha^{n} \rightarrow 0$ since $|\alpha|<1$. Since the spectrum is closed it follows that $0 \in \sigma(T)$ as well.
(1 point)

If $\lambda \notin\left\{\alpha^{n}: n \in \mathbb{N}\right\} \cup\{0\}$, then there exists $\delta>0$ such that $\left|\lambda-\alpha^{n}\right| \geq \delta$ for all $n \in \mathbb{N}$. Note that

$$
(T-\lambda)^{-1} x=\left(\frac{x_{1}}{\alpha-\lambda}, \frac{x_{2}}{\alpha^{2}-\lambda}, \frac{x_{3}}{\alpha^{3}-\lambda}, \ldots\right)
$$

so that

$$
\left\|(T-\lambda)^{-1} x\right\|^{2}=\sum_{n=1}^{\infty} \frac{\left|x_{n}\right|^{2}}{\left|\alpha^{n}-\lambda\right|^{2}} \leq \frac{1}{\delta^{2}} \sum_{n=1}^{\infty}\left|x_{n}\right|^{2}=\frac{1}{\delta^{2}}\|x\|^{2}
$$

which shows that $(T-\lambda)^{-1}$ is bounded so that $\lambda \in \rho(T)$. Hence, $\sigma(T)=\left\{\alpha^{n}\right.$: $n \in \mathbb{N}\} \cup\{0\}$.

(5 points)

Solution of Problem $3(5+3+7+5=20$ points $)$
(a) Let X be a complete metric space and let $O \subset X$ be nonempty and open. Then O is nonmeager.
(5 points)
(b) (i) Note that $\mathcal{P}_{n}=\{p \in \mathcal{P}: \operatorname{deg} p \leq n\}$ is a finite-dimensional subspace of the normed linear space \mathcal{P}. This implies that \mathcal{P}_{n} is closed.
(3 points)
(ii) We need to prove that int $\overline{\mathcal{P}_{n}}=\emptyset$, or, equivalently, since \mathcal{P}_{n} is closed, that $\operatorname{int} \mathcal{P}_{n}=\emptyset$.
(2 points)
If $p_{0} \in \operatorname{int} \mathcal{P}_{n}$ then there exists $\varepsilon>0$ such that

$$
\left\{p \in \mathcal{P}:\left\|p-p_{0}\right\|<\varepsilon\right\} \subset \mathcal{P}_{n}
$$

Let $q \in \mathcal{P}$ be a nonzero polynomial and define $\widetilde{q}=p_{0}+\frac{1}{2} \varepsilon q /\|q\|$ then

$$
\left\|\widetilde{q}-p_{0}\right\|=\frac{1}{2} \varepsilon
$$

which implies that $\widetilde{q} \in \mathcal{P}_{n}$. In turn, this implies that

$$
q=\frac{2\|q\|}{\varepsilon}\left(\widetilde{q}-p_{0}\right) \in \mathcal{P}_{n}
$$

$q \in \mathcal{P}_{n}$ so that $\mathcal{P}=\mathcal{P}_{n}$, which is a contradiction. Hence, $\operatorname{int} \mathcal{P}_{n}=\emptyset$.
(5 points)
(iii) If \mathcal{P} is a Banach space, then it is also a complete metric space. Since

$$
\mathcal{P}=\bigcup_{n=0}^{\infty} \mathcal{P}_{n}
$$

it would follow from Baire's theorem that at least one of the sets \mathcal{P}_{n} is not nowhere dense. This contradicts the conclusion of part (ii). Hence, we conclude that \mathcal{P} is not a Banach space.
(5 points)

Solution of Problem $4(5+5+3+7=20$ points $)$
(a) Let X be a normed linear space and $V \subset X$ a linear subspace. For each $f \in V^{\prime}$ there exists $F \in X^{\prime}$ such that $F \upharpoonright V=f$ and $\|F\|=\|f\|$.
(5 points)
(b) (i) Note that

$$
\|f\|=\sup _{\lambda \neq 0} \frac{\left|f\left(\lambda x_{0}\right)\right|}{\left\|\lambda x_{0}\right\|}=\sup _{\lambda \neq 0} \frac{|1+4 i||\lambda|\left\|x_{0}\right\|}{|\lambda|\left\|x_{0}\right\|}=|1+4 i|=\sqrt{17} .
$$

This means that if $g \in X^{\prime}$ and $g \upharpoonright V=f$ then $\|g\| \geq\|f\|=\sqrt{17}$. This implies that there does not exist an extension g of f such that $\|g\|=4$.

(5 points)

(ii) By the Hahn-Banach theorem there exists an extension $g \in X^{\prime}$ of f such that $\|g\|=\|f\|=\sqrt{17}$.

(3 points)

(iii) Pick a nontrivial $x_{1} \in X$ such that $\left\{x_{0}, x_{1}\right\}$ is a linearly independent set and define g : span $\left\{x_{0}, x_{1}\right\} \rightarrow \mathbb{C}$ by setting

$$
\begin{equation*}
g\left(\lambda x_{0}+\mu x_{1}\right)=(1+4 i) \lambda\left\|x_{0}\right\|+23 \mu\left\|x_{1}\right\| . \tag{2}
\end{equation*}
$$

Clearly, g is linear and $g \upharpoonright$ span $\left\{x_{0}\right\}=f$. Since g is defined on a finitedimensional space it is automatically bounded. Note that $\left|g\left(\mu x_{1}\right)\right| /\left\|\mu x_{1}\right\|=$ 23 for all $\mu \neq 0$ so that $\|g\| \geq 23$.
(5 points)
Now use the Hahn-Banach theorem to extend g to all of X while preserving the norm.
(2 points)

