Final Exam — Functional Analysis (WIFA-08)

Tuesday 4 April 2017, 9.00h–12.00h

University of Groningen

Instructions

- 1. The use of calculators, books, or notes is not allowed.
- 2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or "42" is not sufficient.
- 3. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (10 + 5 + 5 + 5 = 25 points)

Consider the following normed linear space:

$$X = \{ f : [a, b] \to \mathbb{K} : f \text{ is bounded} \},$$
$$\|f\| = \sup_{x \in [a, b]} |f(x)|.$$

- (a) Prove that X is a Banach space (i.e., every Cauchy sequence has a limit).
- (b) Prove that $V = \{f \in X : f(a) = f(b) = 0\}$ is a linear subspace of X.
- (c) Prove that V is closed in X.
- (d) Compute dim (X/V).

Problem 2 (6 + 3 + 8 + 8 = 25 points)

Let $\alpha \in \mathbb{C}$ satisfy $|\alpha| < 1$ and consider the following linear operator:

$$T: \ell^2 \to \ell^2, \quad (x_1, x_2, x_3, \dots) \mapsto (\alpha x_1, \alpha^2 x_2, \alpha^3 x_3, \dots).$$

Prove the following statements:

- (a) $||T|| = |\alpha|;$
- (b) T is selfadjoint if and only if $\alpha \in \mathbb{R}$;
- (c) T is compact;
- (d) $\sigma(T) = \{\alpha^n : n \in \mathbb{N}\} \cup \{0\}.$

Problem 3 (5 + 3 + 7 + 5 = 20 points)

- (a) Formulate Baire's theorem for metric spaces.
- (b) Let $\|\cdot\|$ be any norm on the space

 $\mathcal{P} = \{ p : \mathbb{K} \to \mathbb{K} : p \text{ is a polynomial} \}.$

Prove the following statements:

- (i) $\mathcal{P}_n = \{ p \in \mathcal{P} : \deg p \le n \}$ is closed for each $n \in \mathbb{N} \cup \{0\};$
- (ii) \mathfrak{P}_n is nowhere dense for each $n \in \mathbb{N} \cup \{0\}$;
- (iii) \mathcal{P} is *not* a Banach space.

Problem 4 (5 + 5 + 3 + 7 = 20 points)

- (a) Formulate the Hahn-Banach theorem for normed linear spaces.
- (b) Let X be an infinite-dimensional normed linear space over \mathbb{C} . Pick $x_0 \in X$, $x_0 \neq 0$, and let $V = \text{span} \{x_0\}$. Define the linear functional $f: V \to \mathbb{C}$ by setting $f(\lambda x_0) = (1+4i)\lambda ||x_0||$.

Does there exist a functional $g \in X'$ such that $g \upharpoonright V = f$ and:

- (i) ||g|| = 4?
- (ii) $||g|| = \sqrt{17}$?
- (iii) $||g|| \ge 23$?

End of test (90 points)

Solution of Problem 1 (10 + 5 + 5 + 5 = 25 points)

(a) If (f_n) is a Cauchy sequence in X, then for each $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$n, m \ge N \quad \Rightarrow \quad \|f_n - f_m\| \le \varepsilon$$

In particular, for each $x_0 \in [a, b]$ it follows that

$$n, m \ge N \quad \Rightarrow \quad |f_n(x_0) - f_m(x_0)| \le \varepsilon,$$
 (1)

which means that $(f_n(x_0))$ is a Cauchy sequence in \mathbb{K} .

(3 points)

Since \mathbb{K} is complete the sequence $(f_n(x_0))$ converges. Hence, we can define $f:[a,b] \to \mathbb{K}$ by

$$f(x_0) = \lim_{n \to \infty} f_n(x_0), \qquad x_0 \in [a, b].$$

(2 points)

Taking $m \to \infty$ in the inequality (1) gives

$$n \ge N \quad \Rightarrow \quad |f_n(x_0) - f(x_0)| \le \varepsilon_1$$

and since $x_0 \in [a, b]$ is arbitrary it follows that

$$n \ge N \quad \Rightarrow \quad ||f_n - f|| = \sup_{x_0 \in [a,b]} |f_n(x_0) - f(x_0)| \le \varepsilon,$$

which means that $f_n \to f$ in X.

(3 points)

Finally, with n = N it follows that $f_N - f \in X$ so that $f = f_N - (f_N - f) \in X$. (2 points)

(b) If $f, g \in V$ and $\lambda, \mu \in \mathbb{K}$ then

$$(\lambda f + \mu g)(a) = \lambda f(a) + \mu g(a) = 0,$$
$$(\lambda f + \mu g)(b) = \lambda f(b) + \mu g(b) = 0,$$

which implies that $\lambda f + \mu g \in V$. This proves that V is a linear subspace of X. (5 points)

(c) If $f \in \overline{V}$, then there exists a sequence $f_n \in V$ such that $f_n \to f$. Hence

$$|f(a)| = |f(a) - f_n(a)| \le ||f - f_n|| \to 0,$$

which implies that f(a) = 0. Similarly, it follows that f(b) = 0. We conclude that $f \in V$ so that V is closed.

(5 points)

(d) Define the linear map T : X → K² by Tf = (f(a), f(b)). Then ker T = V and obviously ran T = K². Note that X/ker T ≃ ran T which implies that dim (X/V) = 2.
(5 points)

Solution of Problem 2 (6 + 3 + 8 + 8 = 25 points)

(a) Since $|\alpha| < 1$ it follows that $|\alpha|^n \le |\alpha|$ for each $n \in \mathbb{N}$. Let $x \in \ell^2$ be arbitrary, then

$$||Tx||^{2} = \sum_{n=1}^{\infty} |\alpha^{n}x_{n}|^{2} = \sum_{n=1}^{\infty} |\alpha|^{2n} |x_{n}|^{2} \le |\alpha|^{2} \sum_{n=1}^{\infty} |x_{n}|^{2} = |\alpha|^{2} ||x||^{2},$$

which shows that

$$||T|| = \sup_{x \neq 0} \frac{||Tx||}{||x||} \le |\alpha|.$$

(4 points)

Note that for x = (1, 0, 0, ...) we have ||x|| = 1 and $||Tx|| = |\alpha|$ which implies that $||T|| = |\alpha|$.

(2 points)

(b) If $x, y \in \ell^2$ then

$$(Tx,y) = \sum_{n=1}^{\infty} \alpha^n x_n \bar{y}_n = \sum_{n=1}^{\infty} x_n \overline{\bar{\alpha}^n y_n} = (x, T^*y)$$

which shows that $T^*y = (\bar{\alpha}y_1, \bar{\alpha}^2y_2, \bar{\alpha}^3y_3, ...)$. In particular, it follows that $T = T^*$ if and only if $\alpha \in \mathbb{R}$.

(3 points)

(c) Define for $k \in \mathbb{N}$ the operator

$$T_k: \ell^2 \to \ell^2, \quad (x_1, x_2, x_3, \dots) \mapsto (\alpha x_1, \dots, \alpha^k x_k, 0, 0, 0, \dots)$$

The same argument as in part (a) shows that T_k is bounded. In addition, ran T_k is finite-dimensional, which implies that T_k is compact.

(4 points)

Let $x \in \ell^2$ be arbitrary, then

$$||(T - T_k)x||^2 = \sum_{n=k+1}^{\infty} |\alpha|^{2n} |x_n|^2 \le |\alpha|^{2k+2} \sum_{n=k+1}^{\infty} |x_n|^2 \le |\alpha|^{2k+2} ||x||^2.$$

which shows that $||T - T_k|| \leq |\alpha|^{2k+2} \to 0$ as $k \to \infty$. Since each T_k is compact it follows that T is compact as well.

(4 points)

(d) Clearly, αⁿ is an eigenvalue of T for each n ∈ N. The corresponding eigenvector is given by the n-th standard unit vector. Hence, {αⁿ : n ∈ N} ⊂ σ(T).
(2 points)

Note that $\alpha^n \to 0$ since $|\alpha| < 1$. Since the spectrum is closed it follows that $0 \in \sigma(T)$ as well.

(1 point)

If $\lambda \notin \{\alpha^n : n \in \mathbb{N}\} \cup \{0\}$, then there exists $\delta > 0$ such that $|\lambda - \alpha^n| \ge \delta$ for all $n \in \mathbb{N}$. Note that

$$(T-\lambda)^{-1}x = \left(\frac{x_1}{\alpha-\lambda}, \frac{x_2}{\alpha^2-\lambda}, \frac{x_3}{\alpha^3-\lambda}, \dots\right)$$

so that

$$||(T-\lambda)^{-1}x||^{2} = \sum_{n=1}^{\infty} \frac{|x_{n}|^{2}}{|\alpha^{n}-\lambda|^{2}} \le \frac{1}{\delta^{2}} \sum_{n=1}^{\infty} |x_{n}|^{2} = \frac{1}{\delta^{2}} ||x||^{2},$$

which shows that $(T - \lambda)^{-1}$ is bounded so that $\lambda \in \rho(T)$. Hence, $\sigma(T) = \{\alpha^n : n \in \mathbb{N}\} \cup \{0\}.$

(5 points)

Solution of Problem 3 (5 + 3 + 7 + 5 = 20 points)

(a) Let X be a complete metric space and let $O \subset X$ be nonempty and open. Then O is nonmeager.

(5 points)

- (b) (i) Note that P_n = {p ∈ P : deg p ≤ n} is a finite-dimensional subspace of the normed linear space P. This implies that P_n is closed.
 (3 points)
 - (ii) We need to prove that $\operatorname{int} \overline{\mathcal{P}_n} = \emptyset$, or, equivalently, since \mathcal{P}_n is closed, that $\operatorname{int} \mathcal{P}_n = \emptyset$.

(2 points)

If $p_0 \in \operatorname{int} \mathfrak{P}_n$ then there exists $\varepsilon > 0$ such that

$$\{p \in \mathcal{P} : \|p - p_0\| < \varepsilon\} \subset \mathcal{P}_n.$$

Let $q \in \mathcal{P}$ be a nonzero polynomial and define $\tilde{q} = p_0 + \frac{1}{2}\varepsilon q/||q||$ then

$$\|\widetilde{q} - p_0\| = \frac{1}{2}\varepsilon,$$

which implies that $\widetilde{q} \in \mathcal{P}_n$. In turn, this implies that

$$q = \frac{2\|q\|}{\varepsilon} (\widetilde{q} - p_0) \in \mathcal{P}_n$$

 $q \in \mathcal{P}_n$ so that $\mathcal{P} = \mathcal{P}_n$, which is a contradiction. Hence, int $\mathcal{P}_n = \emptyset$. (5 points)

(iii) If \mathcal{P} is a Banach space, then it is also a complete metric space. Since

$$\mathcal{P} = \bigcup_{n=0}^{\infty} \mathcal{P}_n$$

it would follow from Baire's theorem that at least one of the sets \mathcal{P}_n is *not* nowhere dense. This contradicts the conclusion of part (ii). Hence, we conclude that \mathcal{P} is *not* a Banach space. (5 points)

Solution of Problem 4 (5 + 5 + 3 + 7 = 20 points)

- (a) Let X be a normed linear space and V ⊂ X a linear subspace. For each f ∈ V' there exists F ∈ X' such that F ↾ V = f and ||F|| = ||f||.
 (5 points)
- (b) (i) Note that

$$||f|| = \sup_{\lambda \neq 0} \frac{|f(\lambda x_0)|}{||\lambda x_0||} = \sup_{\lambda \neq 0} \frac{|1 + 4i| |\lambda| ||x_0||}{|\lambda| ||x_0||} = |1 + 4i| = \sqrt{17}.$$

This means that if $g \in X'$ and $g \upharpoonright V = f$ then $||g|| \ge ||f|| = \sqrt{17}$. This implies that there does not exist an extension g of f such that ||g|| = 4. (5 points)

- (ii) By the Hahn-Banach theorem there exists an extension g ∈ X' of f such that ||g|| = ||f|| = √17.
 (3 points)
- (iii) Pick a nontrivial $x_1 \in X$ such that $\{x_0, x_1\}$ is a linearly independent set and define $g : \text{span} \{x_0, x_1\} \to \mathbb{C}$ by setting

$$g(\lambda x_0 + \mu x_1) = (1+4i)\lambda ||x_0|| + 23\mu ||x_1||.$$
(2)

Clearly, g is linear and $g \upharpoonright \text{span} \{x_0\} = f$. Since g is defined on a *finite-dimensional* space it is automatically bounded. Note that $|g(\mu x_1)|/||\mu x_1|| = 23$ for all $\mu \neq 0$ so that $||g|| \geq 23$. (5 points)

Now use the Hahn-Banach theorem to extend g to all of X while preserving the norm.

(2 points)